Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFβ₁ and β₂

L. D. F. Moon and J. W. Fawcett
Physiological Department, University of Cambridge, Downing Site, Cambridge, CB2 3EQ, UK

Keywords: central nervous system, glia, regeneration, scar, transforming growth factor β

Abstract

In this study we investigated whether CNS axons regenerate following attenuation of scar formation using a combination of antibodies against two isoforms of transforming growth factor beta (TGFβ). Anaesthetized adult rats were given unilateral mechanical lesions of the nigrostriatal tract. Implantation of transcranial cannulae allowed wounds to be treated with a combination of antibodies against TGFβ₁ and TGFβ₂ once daily for 10 days postaxotomy. Eleven days post-transection brains from animals under terminal anaesthesia were recovered for histological evaluation. Gliosis, inflammation and the response of dopaminergic nigral axons were assessed by immunolabelling. Treatment with antibodies against TGFβ₁ and TGFβ₂ attenuated (but did not abolish) the response of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes and of NG2-immunoreactive glia but did not attenuate the response of CR3-immunoreactive microglia and macrophages. However, this reduction in scar formation was not accompanied by growth of cut dopaminergic nigral axons. We conclude that treatment of injured adult rat brain with a combination of antibodies against TGFβ₁ and TGFβ₂ results in a reduction of scar formation but that this is not sufficient to enhance spontaneous long distance CNS axon regeneration.

Introduction

Following CNS injury, adult mammalian neurons do not regenerate axons through regions of scar formation (Brecknell & Fawcett, 1996). It is, therefore, important to determine whether attenuating scar formation might enhance CNS axon regeneration. Scar formation is regulated in part by different isoforms of transforming growth factor beta (TGFβ) (Logan & Berry, 1993; McCartney-Francis & Wahl, 1994; Kriegstein et al., 1995; Raivich et al., 1999). In particular, following cortical stab injury in adult rats, whereas intraventricular infusion of TGFβ₁ potentiates aspects of scar formation, chronic intraventricular infusion of antagonists to different isoforms of TGFβ reduces several cellular and molecular components of scar formation, leading to reduced astrocytosis and attenuated deposition of laminin and fibronectin. This has been shown using antibodies to TGFβ₁ (Logan et al., 1994), or antibodies to TGFβ₂ (Logan et al., 1999b), or a nonspecific TGFβ antagonist (the chondroitin sulphate proteoglycan, decorin (Logan et al., 1999a). Panspecific antibodies to TGFβ also reduce collagen production in injured peripheral nerve (Nath et al., 1998).

Further evidence that TGFβ isoforms organize the CNS wounding response comes from in vitro work showing that TGFβ enhances production of extracellular matrix molecules by astrocytes, oligodendrocyte progenitors and fibroblasts (Varga et al., 1987; Baghdassarian-Chalaye et al., 1993; Flanders et al., 1993; Smith & Hale, 1997; Schnädelbach et al., 1998). For example, in vitro, TGFβ enhances production by astrocytes of the chondroitin sulphate proteoglycans, neurocan and versican (Asher et al., 1999; Asher et al. 2000). Thus, TGFβ is known to enhance production of at least two proteoglycans which are abundant at CNS injury sites and which may limit spontaneous CNS axon regeneration.

In this paper we test first whether delivery of a combination of antibodies to TGFβ₁ and TGFβ₂ can reduce injury-evoked gliosis and second, whether any reduction of gliosis is accompanied by an increase in growth of CNS axons. We have performed these experiments in a well-characterized model of CNS axotomy designed for assessment of axon regeneration, namely, following unilateral transection of the nigrostriatal tract in anaesthetized adult rats (Brecknell et al., 1995). We have shown in previous experiments that postinjury modifications of the glial scar environment can promote CNS axon regeneration (Moon et al. 2000; Moon et al. 2001). In the present experiments, we find that administration of antibodies against TGFβ₁ and TGFβ₂ reduces some aspects of glial scarring but does not promote significant CNS axon regeneration.

Materials and methods

Animal care

All animals were treated in accordance with the United Kingdom Animals (Scientific Procedures) Act 1986 and associated guidelines. Animals were housed in groups on a 12-h light : 12-h dark cycle, lights on during the day, and were given food and water ad libitum as
well as playthings to reduce boredom. Following surgery, animals often appeared unkempt due to temporary cessation of grooming and weight loss averaged 20% but both these conditions were reversed within 7–10 days. Animals were handled, inspected and weighed daily. Postoperative diet was supplemented with dog food and wet mash, and to counteract dehydration animals were given 10 mL 4% glucose in 0.18% saline subcutaneously during surgery and thereafter as required. Clean cages were used every 2 days. For analgesia, animals were given soluble paracetamol (1 mg/mL) in their drinking water for at least 3 days postoperatively.

Surgery

Twenty-seven adult Sprague–Dawley rats, weighing 147–223 g, were given unilateral knife cut lesions of the nigrostriatal tract and indwelling cannulae were implanted so as to allow infusion of substances into the lesion site once daily for 10 days postoperatively (Fig. 1).

Rats were anaesthetized using halothane (5%) in carrier (oxygen, 2 L/min) and transferred to a stereotaxic frame (David Kopf Instruments, USA) with the incisor bar set 2.3 mm below the interaural line. Anaesthesia was maintained thereafter with halothane (1.5%–2.0%) in carrier (oxygen, 0.6 L/min) with inhalational analgesic (nitrous oxide, 0.6 L/min). The preshaved scalp was washed with 70% ethanol and painted with antiseptic ointment (Betadine, Associated Dental Products Ltd, Swindon, UK) was placed around the screws and through this the indwelling cannulae were stereotactically lowered 3.0 mm below dura such that 3.0 mm protruded above the 1 mm-thick skull. Quick setting acrylic cement (Simplex rapid acrylic powder premixed with methyl methacrylate, Associated Dental Products Ltd, Swindon, UK) was poured into the syringe barrel and left to dry for at least 8 mins thereby firmly securing the indwelling cannula to the intracranial screws. A stylet was inserted into the indwelling cannula to occlude the cylinder when not in use. Following surgery, the wound was closed with absorbable sutures (Vicryl 4/0, Ethicon, UK) and anicetic powder was applied.

On post-transection days 0–10 inclusive, animals received either saline infusions or 3 µL infusions of various combinations of the following substances in 0.9% saline (See Table 1 for combinations): control antibodies (human IgG4, 750 µg/mL, Sigma, UK); recombinant antibodies to TGFβ1 (anti-TGFβ1, 250 µg/mL, Cambridge Antibody Technology, Melbourn, Cambridge, UK); recombinant antibodies to TGFβ2 (anti-TGFβ2, 500 µg/mL; Cambridge Antibody Technology); recombinant human glial cell line derived neurotrophic factor (GDNF, 83 µg/mL, Amgen, USA); recombinant mouse basic fibroblast growth factor (bFGF, 20 ng/mL, Boehringer, UK) and recombinant mouse interleukin 1α (IL1α, 4 ng/mL, Genzyme, USA). Anti-TGFβ1 is a fully human, single variable chain fragment antibody while anti-TGFβ2 is a fully human, whole IgG4 antibody. The ability of these anti-TGFβ antibodies to bind and neutralize particular isoforms of TGFβ have been described previously (Logan et al., 1994; Logan et al., 1999b). Aliquots of stock solutions were kept frozen at −70 °C and thawed to room temperature immediately prior to use.

Infusion cannulae were made from stainless steel tubing (11 mm, 30 gauge) bent to a 45° angle, 4 mm from one end, with the short arm connected via 30 cm of clear polythene tubing (0.28 mm internal diameter, 0.61 mm external diameter, Portex, UK) to a 10-µL syringe
sledge microtome (Leica, UK) prior to processing various series either to visualize axons of the dopaminergic nigrostriatal tract or to establish the effects of treatments upon various non-neuronal cells or extracellular matrix molecules. A standard immunoperoxidase protocol was followed (Moon et al. 2000) using appropriate blocking serum (normal goat or donkey, Dako, UK) and the following primary antibodies: goat anti-human IgG (Fc specific, peroxidase conjugated, 1:200, Sigma, UK); rabbit antibodies against tyrosine hydroxylase (TH, 1:4,000, Jacques Boy Institut, France); rabbit antibodies against glial fibrillary acidic protein (GFAP, 1:10,000, Dako, UK); mouse monoclonal antibodies against complement receptor 3 (CR3) (clone MRC OX42, 1:200, Serotec, UK), against NG2 (clone D31-10, 1:4, gift of J. Levine), or mouse monoclonal antibodies CS56 (1:100, Sigma, UK). Control immunostaining was performed using appropriate concentrations of mouse IgM (Sigma, UK) or mouse IgG1 (Sigma, UK) in place of the primary antibody. Appropriate biotinylated secondary antibodies were used (horse anti-mouse, rat adsorbed, Vector, UK; goat anti-rabbit IgG, Dako, UK; rabbit anti-goat IgG, Sigma, UK) in conjunction with a streptavidin/biotinylated horseradish peroxidase kit (Dako, UK) with diaminobenzidine as the chromagen. Sections were mounted on presubbed (1% gelatin in PBS) glass slides, dehydrated in an ascending series of ethanol, cleared in xylene and coverslipped using DPX.

Analysis

Optical densitometry was used to assess the extent of gliosis at the lesion site, defined by immunoreactivities for GFAP, NG2, CR3 or CS56. High power (×100) images of the lesion site were captured using a digital camera mounted on a light microscope (Leitz DMRB, Leica, UK) coupled to an IBM-compatible PC running an appropriate graphics package (Photoshop, Adobe). Images were saved as TIFF files without compression and exported to NIH Image (Sciion Image, release beta 3b, Scion Corp.). Lighting conditions and exposures were equal within capture sessions and variabilities due to regions of cavitation associated with near-zero pixel densities were corrected for mathematically. A one millimetre-square field of view including the lesion core was analysed. As these results were taken from three similar experiments, optical density data were normalized across sessions by reassigning the mean of the control IgG4 group from each experiment as 100% and scaling other data accordingly.

Catecholaminergic neurons, including dopaminergic neurons of the nigrostriatal tract, were visualized by immunostaining using antibodies against TH. Dopaminergic nigrostriatal axon growth within brain parenchyma, anterior to the lesion core, was quantified by counting at high magnification (×400) the number of TH-immunoreactive processes crossing an imaginary line of length 3000 μm drawn perpendicular to the course of the original nigrostriatal tract and 500 μm anterior to the plane of transection. Counts were made in two medial sections from each animal. Group differences were assessed using analysis of variance (ANOVA) using a standard level of significance (P < 0.05).

Results

The following terminology will be used: ‘axotomy + sham’ refers to the group of animals that were given unilateral knife cut lesions of the nigrostriatal tract with sham infusions; ‘axotomy + IgG4’ refers to the group of animals that were given unilateral knife cut lesions and infusions of saline containing control human IgG4 antibodies and ‘axotomy + antiTGFβ’ refers to the group of animals that were given unilateral knife cut lesions and infusions of saline containing a
combination of antibodies to TGFβ1 and TGFβ2. It should be noted that for technical reasons, data from groups of animals treated with neurotrophins (see Table 1) were excluded from the analysis of gliosis and is only included where the response of dopaminergic nigral axons was examined. Names of these groups have not been abbreviated in the text.

Gross histological examination indicated a region of tissue damage incorporating both the site of axotomy and (except in ‘axotomy + sham’ animals) the site of infusion. These regions will be referred to collectively as the ‘lesion core’. In ‘axotomy + sham’ animals this lesion core extended a mean distance of 300 μm anterior to the plane of transection, whereas

Fig. 3. GFAP-immunolabelling showing perilesional astrocytosis following (A–B) transection and sham infusion or (C–D) perilesional infusion of either control IgG4 antibodies or (E–F) antibodies against TGFβ1 and TGFβ2, examined 11 days postaxotomy. Astrocytosis was reduced following treatment with antibodies against TGFβ1 and TGFβ2. Nigra is to left of each image, striatum is to right. (A, C and E) Scale bar, 400 μm (B, D and F) Higher magnification view of rectangular area indicated in (A, C and E), respectively. Scale bar, 100 μm.
in all other groups of animals this extended a mean distance of 1000 μm anterior to the plane of transection.

Immunostaining with anti-human antibodies

Eleven days post-transection (i.e. 1 day following the last infusion), to confirm the effective delivery of human control antibodies (IgG4) or human antibodies to TGFβ1 and TGFβ2 in vivo, anti-human antibodies were used to immunoperoxidase label one series of sections. Immunostaining demonstrated the presence of human antibodies within the core of lesion and within a 300-μm-thick rim immediately surrounding the lesion core in ‘axotomy + IgG4’ animals or ‘axotomy + antiTGFβ’ animals (Fig. 2). The spatial distribution of control and experimental antibodies appeared similar between groups and low magnification optical densitometry revealed...
no differences between groups in the abundance of immunoreactivity ($t_8 = 0.12, P = 0.91$). Thus, both control and experimental antibodies were delivered effectively to the region in which reactive gliosis is observed.

Astrocyte response

The astrocytic response was examined using antibodies against GFAP. In all animals, 11 days post-transection, GFAP-immunoreactivity was associated with stellate cells throughout the ipsilateral hemisphere. In ‘axotomy + sham’ animals (Fig. 3A and B) or ‘axotomy + IgG4’ animals (Fig. 3C and D), GFAP-immunoreactivity was particularly intense in the lesion surround, walling the lesion core off completely with a dense network of cell bodies and hypertrophied processes mostly orientated perpendicular to the lesion border (Fig. 3E and F). GFAP-immunoreactivity was also present surrounding regions of cavitation. However, GFAP-immunoreactivity was
absent from the lesion core. The mean rostrocaudal length of the region lacking significant numbers of GFAP-immunoreactive cells was 100 μm.

In ‘axotomy + antiTGFβ’ animals, the extent of GFAP-immunoreactivity was reduced such that fewer astrocyte cell bodies and processes were present surrounding the lesion core, particularly within 250 μm of the lesion border (Fig. 3B). In many places, GFAP-immunoreactivity did not ‘wall-off’ the lesion core and appeared loose and discontinuous.

Analysis of data obtained by low magnification optical densitometry (Fig. 7a) revealed a significant difference between groups ($F_{2,15} = 5.12, P = 0.023$) and post hoc comparisons demonstrated a significant difference between the anti-TGFβ and IgG4 groups (Tukey test, $P < 0.05$). This demonstrates that infusion of antibodies to TGFβ1 and TGFβ2 (relative to IgG4 control antibodies) results in reduced GFAP-immunoreactivity, assessed 11 days following transection.

Adult oligodendrocyte precursor response

The response of adult, stellate oligodendrocyte progenitor cells was examined using antibodies against NG2 chondroitin sulphate proteoglycan (Nishiyama et al., 1999). In ‘axotomy + sham’ animals, the lesion core essentially lacked stellate NG2-immunoreactive cells although it contained NG2-immunoreactivity associated with blood vessels (Fig. 4A and B). The lesion core and, where present, small cavities, were surrounded by large numbers of stellate NG2-immunoreactive cells whose processes ran perpendicularly to the lesion border and formed a dense network of hypertrophic processes forming a continuous *glia limitans*-like structure, this often being less dense caudally. Thus, although cells with low NG2-immunoreactivity were present throughout the ipsilateral hemisphere, the region containing stellate cells intensely immunoreactive for NG2 were confined to within 250 μm of the lesion core.

In ‘axotomy + IgG4’ animals, a similar pattern of NG2-immunoreactivity was detected (Fig. 4C and D). However, as the conjoined site of transection and infusion was larger than following transection alone, the total amount of NG2-immunoreactivity was greater in these animals. However, in ‘axotomy + antiTGFβ’ animals, the extent of NG2-immunoreactivity was reduced such that fewer oligodendrocyte progenitor cell bodies and processes were present surrounding the lesion core, particularly tissue within 250 μm of the lesion border (Fig. 4E and F).

These observations were confirmed by analysis of variance of data obtained by low magnification optical densitometry (Fig. 7b) which indicated a significant difference between groups ($F_{2,15} = 9.91, P = 0.002$); post hoc analysis demonstrated a significant difference between the anti-TGFβ and IgG4 groups and between the IgG4 and sham infusion groups (Tukey test, $P < 0.05$). Thus, relative to ‘axotomy + sham’ controls, while repeated perilesional infusion of IgG4 control antibodies enhanced NG2 gliosis surrounding the site of axotomy, this was attenuated following repeated perilesional infusion of antibodies against anti-TGFβ1 and anti-TGFβ2.

Microglial and macrophage response

Antibodies against complement receptor 3 (CR3, clone MRC-OX42) were used to identify microglia and macrophages. Following...
transection with sham infusion, delicately ramified CR3-immuno-reactive microglia were visible throughout the ipsilateral hemisphere. Stellate ameboid CR3-immunoreactive cells were essentially absent from the lesion core but ameboid CR3-immunoreactive cells were present in this region (Fig. 5A and B). However, stellate CR3-immunoreactive cells were present within 500 μm of the lesion borders and, where present, small cavities. However, the density of CR3-immunoreactive cell bodies and processes in the lesion surround varied significantly such that, whereas some regions were entirely surrounded by CR3-immunoreactivity, other regions contained less intense CR3-immunoreactive cell bodies and processes.

In ‘axotomy + IgG4’ animals, a similar pattern of CR3-immunoreactivity was detected (Fig. 5C and D). However, as the conjoined site of transection and infusion was larger than following transection alone, the total amount of CR3-immunoreactivity was greater in these animals and extended up to 1000 μm from lesion borders. This was also the case in ‘axotomy + antiTGFβ’ animals (Fig. 5E and F) and there were no apparent differences in CR3-immunoreactivity between these two groups.

These observations were confirmed by analysis of variance of data obtained by low magnification optical densitometry (Fig. 7c) indicated a significant differences between groups (F2,15 = 4.55, P = 0.032); post hoc analysis demonstrated a significant difference between the ‘axotomy + sham’ and both other groups (Tukey test, P < 0.05). There was no difference between the ‘axotomy + IgG4’ and ‘axotomy + antiTGFβ’ groups.

Fig. 7. Graphs showing normalized percentage optical densities (‘axotomy + IgG4’ animals taken as 100%), for perilesional immunoreactivities for (a) GFAP (b) NG2 (c) CR3 and (d) CS56. Graphs indicate means and standard errors of means. Relative to ‘axotomy + IgG4’ animals, both ‘axotomy + sham’ and ‘axotomy + antiTGFβ’ animals showed significantly reduced perilesional immunoreactivities for GFAP and NG2. Relative to ‘axotomy + sham’ animals, perilesional immunoreactivities for CR3 and CS56 were greater in ‘axotomy + IgG4’ and ‘axotomy + antiTGFβ’ animals.

TABLE 2. Treatment and numbers of TH-immunoreactive axons

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of TH-immunoreactive axons counted 500 μm anterior to the site of transection (mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axotomy + sham</td>
<td>14.3 ± 6.2</td>
</tr>
<tr>
<td>Axotomy + saline + antiTGFβ₁ + antiTGFβ₂</td>
<td>19.6 ± 2.8</td>
</tr>
<tr>
<td>Axotomy + saline + IgG4 control antibodies</td>
<td>19.5 ± 3.9</td>
</tr>
<tr>
<td>Axotomy + saline + GDNF</td>
<td>16.7 ± 10.4</td>
</tr>
<tr>
<td>Axotomy + saline + GDNF + antiTGFβ₁ + antiTGFβ₂</td>
<td>12.0 ± 4.0</td>
</tr>
<tr>
<td>Axotomy + saline + bFGF + IL-1α + antiTGFβ₁ + antiTGFβ₂</td>
<td>18.0 ± 2.1</td>
</tr>
</tbody>
</table>

CS GAG assessed by immunostaining for CS56

Chondroitin sulphate glycosaminoglycans (CS GAG) were detected by immunostaining using the immunoglobulin-M (IgM) antibody, CS56, which recognizes epitopes predominantly present in both chondroitin-4 and chondroitin-6 sulphate glycosaminoglycans and to a lesser extent in both heparan- (Avnur & Geiger, 1984) and dermatan-sulphate glycosaminoglycans (Lips et al., 1995). Recent work suggests that CS56 does not recognize standard 0-, 4- or 6-sulphated units which comprise the backbone of chondroitin sulphate chains but rather atypical motifs distributed nonrandomly within
these chains (Sorrell et al., 1993). Control immunostaining using mouse IgM antibodies was used to determine the level of nonspecific immunoreactivity associated with the staining protocol due in part to crossreactivity of mouse IgM antibodies with endogenous rat antibodies present in the acute lesion environment.

Examined 11 days post-transection, diffuse, extracellular CS56-immunoreactivity was present in ‘axotomy + sham’ animals in a 100-μm-thick halo surrounding and within the lesion core (Fig. 6A). In contrast, in ‘axotomy + IgG4’ (Fig. 6B) and ‘axotomy + antiTGFβ’ animals (Fig. 6C), diffuse, extracellular CS56-immunoreactivity was present within and up to 2000 μm from the lesion. CS56-immunoreactivity was absent from the lesion core in all animals.

Analysis of variance of data obtained by low magnification optical densitometry (Fig. 7d) revealed significant differences between groups (F2,7 = 29.8, P = 0.002) and post hoc comparisons (Tukey test, P < 0.05) demonstrated significant differences between ‘axotomy + sham’ and both other groups, indicating that infusion of substance enhances abundance of CS GAGs. There were no other differences between groups indicating that, relative to IgG4 control antibodies, a combination of antibodies to TGFβ1 and TGFβ2 did not reduce abundance of CS GAGs assessed 11 days post-transection.

Response of dopaminergic nigral axons

The response of dopaminergic nigrostriatal axons was visualized 11 days post-transection by immunostaining using antibodies against TH. In ‘axotomy + sham’ animals, the distal portion of the dopaminergic nigrostriatal tract degenerated with loss of innervation of the ipsilateral striatum and without spontaneous long distance axon regeneration. At this time, TH-immunoreactive debris was scarce. TH-immunoreactive fibres were observed sprouting ectopically within the lesion core, often being orientated parallel to the plane of transection, i.e. perpendicular to the original nigrostriatal tract (Fig. 8A). Axons were often fasciculated. TH-immunoreactive nigral axons were also observed bordering small cavities (where present) and ventral to brain parenchyma in meninges which had been penetrated during transection. Axons typically extended rostrally no more than 200 μm and did not regenerate beyond the lesion core.

In all other groups of animals, a similar pattern of axonal growth was observed, whether treated with control IgG4 antibodies (Fig. 8B) or GDNF (Fig. 8C) or with antibodies against TGFβ1 and TGFβ2 either alone (Fig. 8D) or in combination with GDNF (Fig. 8E) or with both bFGF and IL-1α (Fig. 8F). TH-immunoreactive processes sprouted ectopically within the lesion, often being fasciculated. Many of these axons grew perpendicular to the orientation of the original nigrostriatal tract (i.e. parallel to the plane of transection). Again, TH-immunoreactive axon sprouts did not regenerate beyond the lesion core although in all groups, a small number of axons extended up to 800 μm within the lesion core anterior to the plane of transection.

Treatment with GDNF or with both bFGF and IL-1α (either alone or in combination with antibodies against TGFβ1 and TGFβ2) did not

Fig. 8. Tyrosine hydroxylase-immunolabelling for catecholaminergic neurons including dopaminergic nigral axons 11 days following nigrostriatal transection and (A) sham infusion or treatment with (B) control IgG4 antibodies (C) GDNF, or antibodies against TGFβ1 and TGFβ2 either (D) alone or (E) in combination with GDNF, or (F) with both bFGF and IL-1α. No differences between groups were observed in the number of TH-reactive processes growing more than 500 μm anterior to the plane of transection. Balls of TH-immunoreactive debris were often observed. Nigra is to left of each image, striatum is to right. Arrow indicates level of transection, arrowhead indicates level of infusion. Scale bar, 250 μm.
visibly enhance growth of dopaminergic nigral axons anterior to the site of transection. Indeed, when assessed formally, there was no difference between groups in the number of dopaminergic nigral axons to grow 500 μm anterior to the plane of transection (Table 2; analysis of variance, F_{3,26} = 0.35, P = 0.87). This indicates that, assessed 11 days postinjury, relative to IgG4 controls, perilesional administration of antibodies against both TGFβ1 and TGFβ2, either alone or in combination with GDNF or bFGF with IL-1α, did not significantly enhance local sprouting of dopaminergic nigral axons within brain parenchyma beyond the lesion core.

Discussion

We have shown that, following unilateral nigrostriatal transection in the adult rat, treatment with a combination of antibodies to TGFβ1 and TGFβ2 reduces (but does not abolish) the response of astrocytes and NG2-immunoreactive adult oligodendrocyte progenitor cells, although not the response of microglia/macrophages or CS GAG. However, despite this reduction in gliosis, treatment with a combination of antibodies to TGFβ1 and TGFβ2 did not enhance the regeneration of cut dopaminergic nigral axons beyond the lesion core; in particular, cut dopaminergic nigral axons did not regenerate back to their original primary target, the ipsilateral striatum.

These results are consistent with previous experiments demonstrating that various TGFβ antagonists modulate aspects of scar formation in vivo (Logan et al., 1994; Nath et al., 1998; Logan et al., 1999a; Logan et al., 1999b). Our work similarly implies that TGFβ isoforms regulate gliosis associated with both astrocytes and NG2-immunoreactive oligodendrocyte progenitors, although further experiments are required to determine which, if either, isoform is the more important for regulation of the response on NG2 oligodendrocyte progenitor cells. The present failure to detect any effect upon microglia/macrophages of the combination of antibodies against TGFβ1 and TGFβ2 may reflect a cancelling out of activity by the two isoforms as, when administered alone following cortical injury in adult rats, whereas TGFβ2 reduces the microglial/macrophage response (Logan et al., 1999b), TGFβ1 increases it (Logan et al., 1994). Arguing against this possibility, however, is the observation that administration of the pan-TGFβ antagonist, decorin, reduces the microglia/macrophage response following cortical injury (Logan et al., 1999a).

We hypothesized that the reduction in gliosis might have been only partial because of the route of administration of antibodies, viz., by repeated perilesional infusion, as the gliotic response to injury was potentiated by each intraparenchymal injection. To test this hypothesis, an additional experiment was performed (data not shown). Adult rats were given unilateral mechanical nigrostriatal lesions and transcranial cannulae were implanted transcranially allowing repeated perilesional infusion, as the gliotic response to injury was assessed 11 days postinjury, relative to IgG4 controls, perilesional administration of antibodies against both TGFβ1 and TGFβ2, either alone or in combination with GDNF or bFGF with IL-1α, did not significantly enhance local sprouting of dopaminergic nigral axons within brain parenchyma beyond the lesion core.

Our results regarding the failure of cut dopaminergic nigral axons to grow through the region of reduced scar formation are consistent with unpublished data cited previously (Logan et al., 1994). This work suggested that attenuation of scar formation mediated by antibodies against TGFβ1 occurs without concomitant increases in local sprouting or long distance axon regeneration 10 days following cortical stab injury in adult rats, as assessed by immunostaining for neurofilament or growth associated protein-43. It should be noted that in our study, effective delivery of human antibodies was confirmed by immunolabelling tissue (using anti-human secondary antibodies) 1 day following the last infusion of control and experimental antibodies. Our failure to detect an effect upon axons is, therefore, not a consequence of failed delivery. Successful delivery of antibodies is, of course, also confirmed by the effects upon gliosis that we have described.

The failure of cut dopaminergic nigral axons to grow through the region of reduced scar formation is probably due to the reduction in scar formation being partial rather than complete; complete abolition of scar formation may, thus, be required to induce substantial long distance CNS axon regeneration. In particular, we observed no significant reduction in perilesional abundance of CS GAGs, (assessed by immunolabelling using CSS6 antibodies) that are known to limit growth in vitro and in vivo. Thus, anti-TGFβ-mediated down-regulation of astrocytosis (assessed using GFAP-immunolabelling) may not be sufficient to down-regulate levels of CS GAGs. Possible explanations include (i) independent regulation of CS GAGs and GFAP by astrocytes and (ii) continued synthesis of CS GAGs by other cell types (including NG2-immunoreactive cells). It is also possible that changes did occur in CS GAGs other than those recognized by the CS-56 antibody; at present it is not clear which CSPGs this antibody recognizes. These results emphasize that although GFAP is a good marker for astrocyte reactions to lesions, other markers for gliosis provide important additional information (e.g. by immunolabelling for NG2-immunoreactive cells or for CS CSPGs).

In some cases, additional potential regeneration-enhancing molecules were delivered together with the antibodies against TGFβ1 and TGFβ2: glial cell line derived neurotrophic factor (GDNF) or the combination of basic fibroblast growth factor (bFGF) with interleukin-1α (IL-1α–). These factors and their doses were selected on the basis of previous work conducted in laboratories including our own. First, GDNF enhances outgrowth of axons from dopaminergic nigral neurons in vitro and in vivo (Sinclair et al., 1996; Wilby et al., 1999). Second, a combination of bFGF and IL-1α makes three dimensional cultures of astrocytes more permissive for ingrowth of neurites from neonatal rat dorsal root ganglion neurons (Fok-Seang et al., 1998). Further, as this effect can be blocked by TGFβ, one would predict that the combination of antibodies to TGFβ1 and TGFβ2, with bFGF and IL-1α might further enhance neurite penetration of regions of scar formation. However, disappointingly, repeated intraparenchymal administration of these factors, either alone or in combination with antibodies to TGFβ1 and TGFβ2, did not significantly enhance dopaminergic nigrostriatal axon growth through or beyond the lesion core. A failure to detect any growth may relate to the rather small numbers of animals used and additional experiments would be required to evaluate the significance of this negative result more rigorously. Nevertheless, in this small study, efforts to boost axon regeneration through the partially attenuated scar following administration of neurotrophins were not successful.

© 2001 Federation of European Neuroscience Societies, European Journal of Neuroscience, 14, 1667–1677
In conclusion, in vivo administration of antibodies against TGFβ1 and TGFβ2 significantly reduce gliosis induced by nigrostriatal transection in the adult rat. However, this partial reduction is not accompanied by any change in growth of cut dopaminergic nigral axons. In the future it will be important to evaluate alternative methods of delivery of these antibodies to achieve a more complete reduction in gliosis.

Acknowledgements

This work was funded by the Medical Research Council, the International Spinal Research Trust, the Wellcome Trust and Action Research. Antibodies against NG2 were kindly provided by Joel Levine, Department of Neurobiology and Behavior, State University of New York at Stony Brook, NY 11794-5230.

Abbreviations

bFGF, basic fibroblast growth factor; CS GAG, chondroitin sulphate glycosaminoglycans; GDNF, Glial cell-line Derived Neurotrophic Factor; GFAP, Glial Fibrillary Acidic Protein; IL-1, Interleukin-1; TGF, Transforming Growth Factor β.

References

